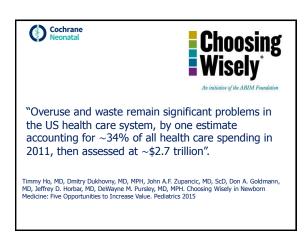


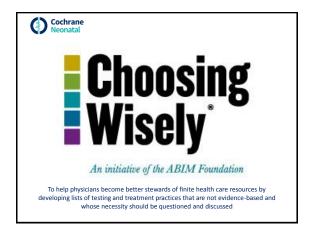


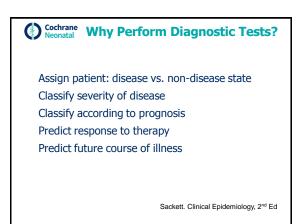
Disclosure

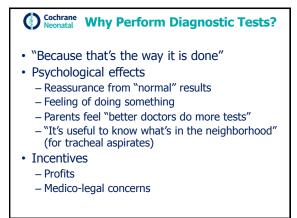
Roger F. Soll is the Coordinating Editor of Cochrane Neonatal and President of Vermont Oxford Network.

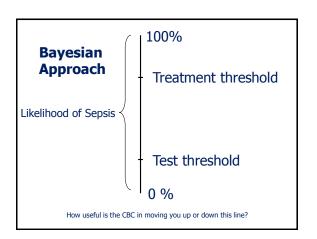
Gautham Suresh and Mohan Pammi are Editors of Cochrane Neonatal.

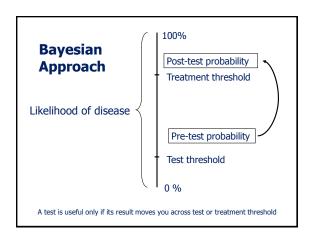




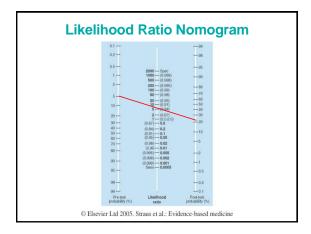



Ultimate Question


How will doing the test change your management?



Positive Likelihood Ratio


Probability of person with disease having a positive test

Probability of person without disease having a positive test

Negative Likelihood Ratio

Probability of person with disease having a negative test

Probability of person without disease having a negative test

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic

Accuracy Studies

Penny F, Whiting, PhD, Anna W.S. Rutjee, PhD, Marie E, Westwood, PhD, Susan Malliett, PhD, Jonathan J, Deeks, PhD, Jonathan AC, Steme, PhD, Philink HJA, Besseyt, PhD, and the QUADAS-2 Group

Ann Intern Med. 2011;155:529-536.

Cochrane Neonatal

Evaluating a Paper on Diagnostic Testing: Risk of Bias

- 1. Patient selection
- 2. Index test
- 3. Reference standard
- 4. Patient flow and timing

Evaluating a Paper on Diagnostic Testing Patient (Participant) Selection

- 1. Was a consecutive or random sample of patients enrolled?
- 2. Was a case-control design avoided?
- 3. Did the study avoid inappropriate exclusions?

Yes / No / Unclear

Evaluating a Paper on Diagnostic Testing: Index Test

Were the index test results interpreted without knowledge of the results of the reference standard?

If a threshold was used, was it prespecified?

Yes / No / Unclear

Evaluating a Paper on Diagnostic Testing: Reference Standard

Was an independent gold-standard test used?

Is the reference standard likely to correctly classify the target condition?

Were the reference standard results interpreted without knowledge of the results of the index test (blinded)?

Yes / No / Unclear

Evaluating a Paper on Diagnostic Testing: Patient Flow and Timing

Was there an appropriate interval between index tests and reference standard?

Did all patients receive a reference standard (Was it applied to all patients, irrespective of the results of the diagnostic test)?

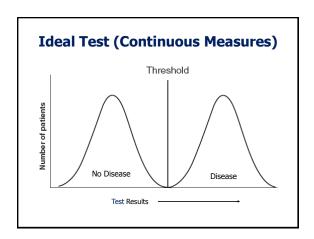
Did all patients receive the same reference standard? Were all patients included in the analysis?

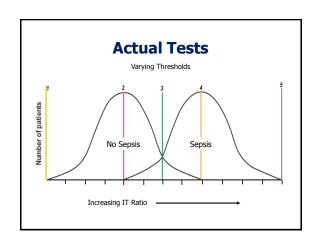
Yes / No / Unclear

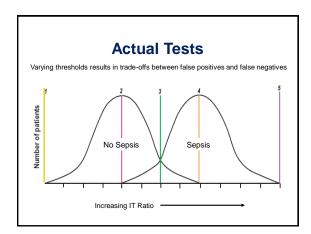
Evaluating a Paper on Diagnostic Testing: Applicability

Are there concerns that the following do not match the review question?

- Included patients was the diagnostic test evaluated in an appropriate spectrum of patients (not just florid or asymptomatic patients)?
- Index test, its conduct, or interpretation
- Reference standard

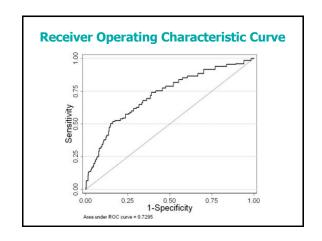

High / Low / Unclear




Evaluating a Paper on Diagnostic Testing: What is an Abnormal Test?

- 1. Outside 2 SD, or outside 10 to 90th percentile
- 2. Level at which risk of disease is increased
- 3. Range where target disease highly probable
- 4. Range in which Rx does > good than harm

Modified from Sackett: Evidence Based Medicine



	Disease Present	Disease Absent	
Diagnostic Test Positive	True Positive	False Positive	
Diagnostic Test Negative	False Negative	True Negative	

Accuracy of Test					
	Disease Present	Disease Absent			
Diagnostic Test Positive	6 (60%) (True Positive)	300 (30%) (False Positive)	306		
Diagnostic Test Negative	4 (40%) (False Negative)	700 (70%) (True Negative)	704		
	10	1000	1010		

Mnemonics

SENSITIVITY

PID - positive in disease

SnOut: Tests with a high sensitivity rule OUT the disease

SPECIFICITY

NIH - Negative in health

SpIn: Tests with a high specificity rule IN the

disease

Systematic Reviews of Diagnostic Test Accuracy

Identify all available evidence
Evaluate the quality of published studies
Produce estimates of test performance and impact based on all available evidence
Account for variation in findings between studies

Neonatal Sepsis

Bacterial and fungal sepsis in neonates

- early-onset (≤ 72 hr), 1.5% to 1.9% of VLBW infants
- late-onset (> 72 hr), 10 to 20% of VLBW infants

Mortality -18 to 36%

Morbidity-PDA, BPD, ROP, increased hospital stay

Non-specific clinical signs and symptoms

Early diagnosis and treatment may improve outcomes

Diagnosis of Sepsis

Gold standard or Reference standard

Microbial cultures of blood, CSF or other sterile body fluids

Reference Standard- Cultures

Assumed to have low sensitivity

- Low degree of neonatal bacteremia or fungemia
- Small inoculation volumes in culture bottles
- Intrapartum antibiotics

Results in 24 to 72 hours

Sepsis diagnostic test	Sensitivity	Specificity	
White cell indices			
WBC < 5000	0.2	0.96	
WBC < 1000	0.3	1.0	
I:T ratio greater than 0.20	0.55	0.74	
Serum biomarkers			
CRP	0.6 to 0.84	0.84 to 1.0	
Procalcitonin	0.91	0.65	
Tumor necrosis factor a	0.6 to 0.82	0.86 to 0.93	
Interleukin-6	0.58 to 0.89	0.84 to 0.96	

Ideal Test to Replace Blood Cultures

Rapid results

High sensitivity

· not to miss infections

High specificity

· reliably exclude sepsis to avoid unnecessary antibiotics

Detect all organisms relevant to neonatal sepsis

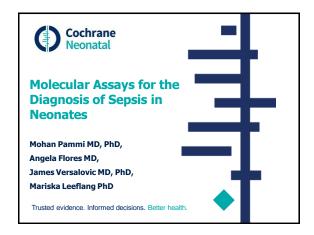
Not be affected by maternal antibiotics

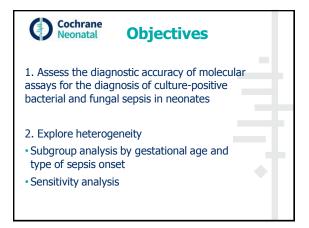
Why Molecular Assays?

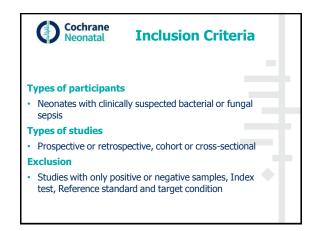
Molecular assays

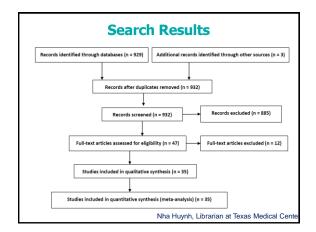
- •Rapid results 6 to 8 hrs
- May have higher sensitivity

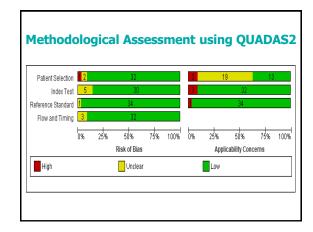
Index test- Molecular assays

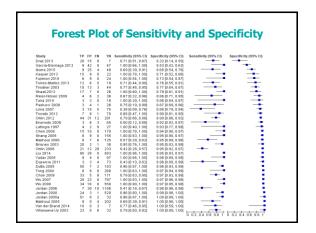

Any assay that involves extraction and evaluation of nucleic acid from bacteria or fungi

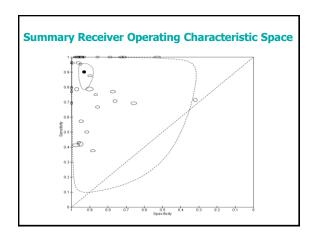



Amplification of microbial DNA


- 1. Broad-range conventional PCR assays
- 2. Real-time PCR
- 3. Post-PCR sequencing or hybridization
- 4. Multiplex-PCR- multiple organisms
- 5. Species or genus-specific assays









RESULTS Meta-analyses • bivariate random-effects model using statistical software STATA GRADE rating of evidence • Downgraded for inconsistency and imprecision • We did not find significant publication bias –Deeks' test for publication bias GRADE rating for diagnostic tests. Gopalakrishna 2015

Summary of Findings Table					
	Groups	Studies (n)	Sensitivity (95% CI)	Specificity (95% CI)	Quality of evidence using GRADE
	All studies	35	0.90 (0.82 to 0.95)	0.93 (0.89 to 0.96)	Moderate
Type of test	Broad-range PCR	9	0.97 (0.86 to 1.00)	0.93 (0.77 to 0.98)	Moderate
	Real-time PCR		0.86 (0.59 to 0.96)	0.94 (0.90 to 0.97)	Moderate
	Post-PCR processing	5	0.97 (0.40 to 1.00)	0.96 (0.93 to 0.98)	Low
	Multiplex PCR		0.76 (0.60 to 0.88)	0.81 (0.70 to 0.89)	Low
	Staphylococcal PCR*	2	-	-	Low
	Fungal PCR*	4	-	-	Low
Quality	Good methodologic studies only	22	0.90 (0.78 to 0.96)	0.93 (0.88 to 0.96)	Moderate

	Groups	Studies	Sensitivity (95% CI)	Specificity (95% CI)	Quality of evidence GRADE
Type of sepsis	EOS	2	•	-	Low
эсрэіз	LOS	10	0.79 (0.69 to 0.86)	0.94 (0.85 to 0.98)	Low
	Mixed EOS and LOS	23	0.94 (0.84 to 0.98)	0.92 (0.87 to 0.95)	Moderate
Gestational age	Preterm	5	0.89 (0.75 to 0.96)	0.87 (0.71 to 0.94)	Low
	Mixed term and preterm	30	0.90 (0.80 to 0.96)	0.94 (0.90 to 0.96)	Moderate
Prevalence	< 15%	20	0.94 (0.80 to 0.99)	0.95 (0.92 to 0.97)	Moderate
	15% to 30%	8	0.85 (0.67 to 0.94)	0.88 (0.79 to 0.94)	Low
	> 30%	7	0.87 (0.75 to 0.93)	0.93 (0.64 to 0.99)	Low
Specimen	Blood only	32	0.92 (0.84 to 0.96)	0.93 (0.89 to 0.95)	Low
	Blood and CSF	3	•	•	Moderate

Applicability in Clinical Practice

Diagnostic tests in clinical practice

- Replace the reference standard
- Triage tests
- · Who gets the reference standard
- 'Add-on' tests
- · In addition to the reference standard

Comparative accuracy: assessing new tests against existing diagnostic pathways, Bossuyt BMJ 2006

Applicability in Clinical Practice

1000 VLBW neonates screened for EOS (prevalence was 2%)

- Sens 0.90 and Spec 0.93
- Miss 2 cases of sepsis
- Unnecessarily treat 69 neonates without sepsis.

1000 VLBW neonates screened for LOS (prevalence 10%)

- Miss 10 culture-positive cases
- Unnecessarily treat 63 neonates without sepsis.

Currently available molecular assays may not have sufficient diagnostic accuracy to **replace** microbial cultures

Current molecular assays do not provide antimicrobial susceptibility

Applicability in Clinical Practice

Triage test - unlikely

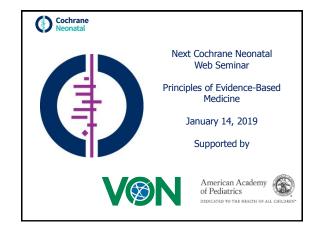
- An unwanted delay in performing blood cultures may ensue and may postpone treatment
- · False negatives on the molecular tests will compromise neonatal safety

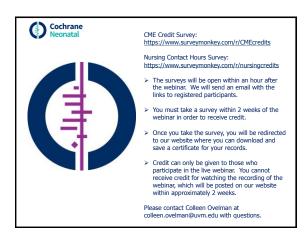
'Add-on' tests concurrent to blood cultures

- · faster turnaround time
- Results available in six to eight hours -optimize clinical therapy
- If negative, antibiotics may be discontinued if the test assay has high specificity and high negative predictive value

Conclusions

Molecular assays- potential as 'add-on' tests as they give rapid results that may aid clinical decisions regarding treatment (moderate to low quality evidence)


Which assay to use?


Technological advances may lead to better assays

• Design studies -high methodologic quality and minimal bias

Costs of the molecular assays need to be balanced with their ability to impact clinical outcomes

