

Roger F. Soll Coordinating Editor Bill McGuire Coordinating Editor Michelle Fiander Managing Editor Sharla Crowley Program Coordinator 2

Editorial Team

Cochrane Neonatal

Cochrane Neonatal

10

Cochrane Neonatal

The infant and family experience in neonatal intensive care

Evidence synthesis for informed decisions and better health including:

- 1. Management of acute procedural pain;
- Management of longer-term pain and discomfort associated with mechanical ventilation and surgical procedures; and
- Impact of the intensive care environment and developmental care practices on infant development.

Cochrane Neonatal Cochrane Neonatal Stress in Neonatal Intensive Care Stress in Neonatal Intensive Care Although there have been significant strides towards The stresses inherent to neonatal intensive care decreasing mortality in preterm infants, many surviving include the need for frequent painful procedures, infants experience significant developmental problems, in pain associated mechanical ventilation and major both motor and intellectual development [Horbar 2012; Stoll surgical intervention, and the overall environment of 2015; Saigal 2008; Hintz 2011; Santos 2015]. neonatal intensive care, so vastly different than the experience of the infant prior to delivery. The stressful environment of neonatal intensive care is a double-edged sword, contributing to both improved survival as well as concerning developmental outcome. 13 14 Cochrane American Academy of Pediatrics 68 Pain and discomfort Pain and discomfort In response to such studies, the Committee on Fetus and Newborn of the Painful procedures are a perfect example of the stress American Academy of Pediatrics states that preventing or minimizing pain in neonates should be a priority for neonatal caregivers and recommends inflicted on newborn infants while receiving intensive "written guidelines, based on existing and emerging evidence, for a Care [Anand 2006]. stepwise pain-prevention and treatment plan" which would include judicious use of procedures, routine assessment of pain, and use of both A study in 2003 found that newborns in intensive pharmacologic and nonpharmacologic therapies for the prevention of pain care receive an unbelievable 14 painful procedures The pain management strategy suggested by the Committee on Fetus and per day, while almost 40% did not receive any Newborn and Section on Anesthesiology and Pain Medicines is analgesic therapy [Simmons 2003]. comprehensive, but acting on each facet is not without challenges. [Committee on Fetus and Newborn and Section on Anesthesiology and Pain Medicines 2016]. 15 16

Cochrane Neonatal

Management of acute procedural pain

Reports from NICUs across the world demonstrate that we have considerable room for improvement.

Surveys of practice

A variety of surveys from the early 2000s have demonstrated major gaps in staff knowledge and understanding to the diagnosis, implications and treatment of pain in

- · Staff underestimated the pain caused by procedures
- · Pain assessment tools were used by a minority of centers
- Respondents reported that analgesia and comfort measures were not usually administered for most procedures:
- Non-nutritive sucking was used by 66% of respondents but other methods of non-pharmacological management were under-utilized.
- · Few (21% and 37%) had received training on neonatal pain

Dodds E. Neonatal procedural pain: a survey of nursing staff. Paediatr Nurs.2003;15:18-2

Akuma AO, Jordan S. Pain management in neonates: a survey of nurses and doctors. J Adv Nurs. 2012 Jun;68(6):1288-301. doi: 10.1111/j.1365-2648.2011.05837.x. Epub 2011 Oct 11. PMID: 21988718.

[Committee on Fetus and Newborn and Section on Anesthesiology and Pain Medicines 2016].

21

Cochrane Neonatal

Minimizing procedures

The most effective way of reducing minor procedural pain in the neonate is to $\ensuremath{\textbf{reduce}}$ the number of procedures performed

There currently is a paucity of research regarding effective ways to accomplish this, but strategies for reducing the number of procedures that neonates experience should be developed and their effectiveness should be tested.

Such an approach might include reducing the number of bedside disruptions in care.

Other strategies might include bundling interventions, eliminating unnecessary laboratory or radiographic procedures, using transcutaneous measurements when possible, and minimizing the number of repeat procedures performed after failed attempts.

Gibbins S, Stevens B, Asztalos E. Assessment and management of acute pain in high-risk neonates. Expert Opin Pharmacother.2003;4:475–483

20

22

included: (1) eliminating 11,000 POKEs per year (a 50% reduction in overall POKEs), (2) realizing \$940,000 per year in cost savings (a 28% reduction of overall cost), (3) reducing length of stay by 2 weeks per average stay (a 21% reduction in length of stay), and (4) eliminating Hospital Acquired Infections (i.e., Central-line Associated Bloodstream Infection and Ventilator-associated Pneumonia), translating into 10 lives saved and a \$5.2M savings over a decade.

27

Cochrane Neonatal		Routine assessment of pain							
Commonly used Neonatal Pain Assessment Scales									
Tool	Characteristics	Score	Reliability						
Premature Infant Pain Profile Revised (PIPP-R)(44%)	heart rate oxygen saturation facial actions	0-21 for preterm 0-18 for term	Reliable, valid, clinical utility is well established						
veonatal Infant Pain Scale (NIPS)(23%)	facial expression, crying, breathing patterns, arm and leg movements, arousal	0-7	Reliable, valid						
Neonatal Facial Coding System Revised (NFCS-R) (9%)	facial movement	0-10	Reliable, valid, dinical utility is well established, high degree of sensitivity to analgesia						
Douleur Alguë Nouveau-né (DAN) (6%)	facial responses limb movements vocal expression of pain	0-10	Reliable, valid						
COMFORT neo (4%)	behavioral indicators: state of alertness, agitation, respiratory reaction, crying, general movements, muscle tone and facial expression, and physiological indicators: blood pressure and heart rate.	7-35	Reliable, valid, dinical utility well established						
Veonatal Pain, Agitation and Sedation Scale (N- PASS)(3%)	Crying, irritability, facial expression, extremity tone, vital signs	0–13 for preterm 0–10 for term	Reliable, valid. Includes sedation end of scale, does not distinguish pain from agitation						

26

28

Cochrane Neonatal

The infant and family experience in neonatal intensive care

Optimal management for procedural pain

- 1. Venipuncture versus heel lance for blood sampling in term neonates
- 2. Breastfeeding or breast milk for procedural pain in newborn infants
- 3. Non-pharmacological management of infant and young child procedural pain
 - Non-nutritive sucking for procedural pain in newborn infants
 Swaddling or tucking
- 4. Skin-to-skin care for procedural pain in neonates
- Sweet solutions for procedural pain in newborn infants
- Topical anesthesia for procedural pain in newborn infants
- Non-opioid analgesic agents for procedural pain in newborn infants
- 8. Opioids for procedural pain in neonates

33

34

Cochrane Neonatal

Venipuncture versus heel lance for blood sampling in term neonates

Authors' conclusions

Venipuncture, when performed by a skilled phlebotomist, appears to be the method of choice for blood sampling in term neonates. The use of a sweet tasting solution further reduces the pain.

Further well designed randomized controlled trials should be conducted in settings where several individuals perform the procedures.

Shah VS, Ohlsson A. Venipuncture versus heel lance for blood sampling in term neonates. Cochrane Database of Systematic Reviews 2011, Issue 10. Art. No.: CD001452. DOI: 10.1002/14651858.CD001452.pub4.

Cochrane Neonatal Breastfeeding for procedural pair in newborn infants								
ntervention/outcome	Studies	Infants	Results					
Breastfeeding versus no intervention								
Heart rate	2 studies	166 infants	MD -5.56 bpm lower (95% CI -16.34 lower to 5.22 higher)					
Duration of crying	10 studies	790 infants	MD -36.23 seconds (95% CI -55.57 lower to -16.89 lower)					
Neonatal Infant Pain Scale (NIPS)	5 studies	5 studies 459 infants MD -2.53 lower (95% CI -3.46 lower to -1						
Breastfeeding versus being h	eld by mother							
Heart rate	5 studies	295 infants	MD -11.78 bpm lower (95% CI -19.95 lower to -3.60 lower)					
Duration of crying	4 study	260 infants	MD -16.50 seconds (95% CI -29.68 lower to -3.32 lower)					
Neonatal Infant Pain Scale (NIPS)	3 studies	230 infants	MD -0.81 lower (95% CI [-1.57 lower to -0.05 lower)					

39

Breastfeeding or breast milk for procedural pain in newborn infants

Authors' conclusions

Cochrane

Moderate/low certainty of evidence suggest that breastfeeding or supplemental breast milk likely reduce pain in neonates undergoing painful procedure as compared to no intervention/positioning/holding neonates or placebo or nonpharmacological interventions.

Low certainty of evidence suggest that moderate concentration (20% to 33%) of glucose/sucrose may have little or no difference in reducing pain compared to breastfeeding.

The effectiveness of breast milk for painful procedure should be studied in the preterm population, as there are currently a limited number of studies that have assessed its effectiveness in this population.

Shah PS. Torgalkar R, Shah VS. Breastfeeding or breast milk for procedural pain in newborn infants Cochrane Database of Systematic Reviews 2012, Issue 12. Art. No.: CD004950. DOI: 10.1002/14651858.CD004950.pub3. update 2022

Cochrane Neonatal	Non-nutritive sucking								
Outcome	Studies	Infants	Results						
Preterm infants									
Pain reactivity	6 studies (7 arms)	329 infants	SMD -0.31 lower (95% CI -0.65 lower to 0.04 higher)						
Immediate pain regulation	5 studies (7 arms)	260 infants	SMD -0.43 lower (95% CI -0.63 lower to -0.23 lower)						
	Terr	n infants							
Pain reactivity	5 studies	270 infants	SMD -1.20 lower (95% CI -2.01 lower to -0.38 lower)						
Immediate pain regulation	7 studies	325 infants	SMD -0.90 lower (95% CI -1.54 lower to -0.25 lower)						
Very low quality evidence									

Cochrane Neonatal	Swaddling/tucking-related						
Outcome	Studies	Infants	Results				
Preterm infants							
Pain reactivity	9 studies	331 infants	SMD -0.89 lower (95% CI -1.37 lower to -0.40 lower)				
Immediate pain regulation	5 studies	119 infants	SMD -0.71 lower (95% CI -1.00 lower to -0.43 lower)				
Term infants							
Pain reactivity	1 study	42 infants	SMD -1.26 lower (95% CI -1.92 lower to -0.60 lower)				

49

51

Cochrane Neonatal Skin-to-skin care for procedural pai in neonates							
ntervention/outcome	Studies	Infants	Results				
eventeen studies (n = 810) con	npared skin to	skin care (SS	C) to a no-treatment control				
Heart rate during	5 studies	161 infants	MD -10.78 bpm lower (95% CI -13.63 lower to -7.93 lower)				
Heart rate after	4 studies	120 infants	MD 0.08 seconds higher (95% CI -4.39 lower to 4.55 higher)				
Duration of crying	 2 studies heel lance 2 studies IM injection 	heel lance: 33 infants IM injection: 100 infants	heel lance MD -34.16 seconds lower (95% CI -42.86 lower to -25.45 lower) IM injection (MD -8.83 seconds lower (95% CI -14.63 lower to -3.02 lower)				
Premature Infant Pain Profile (PIPP)	5 studies 3 studies 60 seconds 3 studies 90 seconds	267 infants 156 infants 156 infants	30 seconds MD -3.21 lower (95% CI -3.94 lower to -2.47 lower) 60 seconds MD -1.64 lower (95% CI -2.86 lower to -0.43 lower) 90 seconds MD -1.28 lower (95% CI -2.35 lower to -0.04 lower)				
	3 studies 120 seconds	156 infants	(95% CI =2.53 lower to =0.04 lower) 120 seconds MD 0.07 higher (95% CI =1.11 lower to 1.25 higher).				

50

52

 Cochrane Neonatal
 Skin-to-skin care for procedural pain in neonates.

Authors' conclusions

SSC appears to be effective as measured by composite pain indicators with both physiological and behavioral indicators and, independently, using heart rate and crying time; and safe for a single painful procedure.

There is a need for replication studies that use similar, clearly defined outcomes. Studies examining optimal duration of SSC, gestational age groups, repeated use, and long-term effects of SSC are needed. Of interest would be to study synergistic effects of SSC with other interventions.

Johnston and colleagues. Skin-to-skin care for procedural pain in neonates. Cochrane Database of Systematic Reviews 2017, Issue 2. Art. No.: CD008435. DOI: 10.1002/14651858. CD008435. pub3.

56

Cochrane

Sucrose for analgesia in newborn infants

undergoing painful procedures

58

Topical anaesthesia for needle-related pain in newborn infants.

Foster JP, Taylor C, Spence K, Shaffer Zawahry H, Stefaniw I.

Cochrane Database of Systematic Reviews 2017, Issue 2. Art. No.: CD010331. DOI: 10.1002/14651858.CD010331.pub2.

Cochrane Neonatal Topical anesthesia for procedural pain in newborn infants								
Intervention/outcome	Studies	Infants	Results					
EMLA versus placebo								
Pain using Premature Infant Pain Profile (PIPP) score	1 study	38 infants	MD 0.27 higher (95% CI -1.45 lower to 1.99 higher)					
Pain using Neonatal Infant Pain Scale (NIPS) score	2 studies	165 infants	MD -2.69 lower (95% CI -3.11 lower to -2.27 lower)					
Successful venipuncture first attempt	1 study	111 infants	RR 0.98 (95% CI 0.93 to 1.03)					
Amethocaine versus placebo								
Pain using Premature Infant Pain Profile (PIPP) score	1 study	20 infants	MD -0.30 lower (95% CI -2.28 lower to 1.68 higher)					
Pain using Neonatal Infant Pain Scale (NIPS) score	1 study	20 infants	MD -0.30 lower (95% CI -1.62 lower to 1.02 higher)					
Successful venipuncture first attempt	2 studies	98 infants	RR 1.06 (95% CI 0.33 to 1.34)					

Cochrane Neonatal	Opioids for procedural pain							
Intervention	Studies	Infants	Results					
Opioids versus no treatment or placebo for procedural pain								
NIPS during procedure	2 studies	102 infants	MD -1.97 lower (95% CI -2.46 lower to -1.48 lower)					
Pain score (PIPP/PIPP-R) during the procedure	3 studies	199 infants	MD -2.58 lower (95% CI -3.12 lower to -2.03 lower)					
Pain score (PIPP/PIPP-R) up to 30 minutes after procedure	2 studies	123 infants	MD 0.14 higher (95% CI -0.17 lower to 0.45 higher)					
PIPP/PIPP-R 1-2 hours after procedure	2 studies	54 infants	MD -0.83 higher (95% CI -2.42 lower to 0.75 higher)					
Episodes of bradycardia	3 studies	172 infants	RR 3.19 (95%CI 0.14 to 72.69)					
Episodes of desaturation	3 studies	199 infants	RR 1.82 (95% CI 0.72 to 4.58)					
Episodes of apnea	3 studies	199 infants	RR 3.15 (95% CI 1.08 to 9.16)					
Hypotension	2 studies	88 infants	Not estimable					

73

75

Conclusions Conclusions Limited evidence is available regarding opioid administration for procedural pain in newborn infants compared to placebo or no drug, non-pharmacological interventions, other opioids or analgesics, or the same opioid by different route of administration. In comparison to placebo, opioids probably reduce pain score assessed shortly after the procedure. The evidence is very uncertain about the effect of opioids on episodes of bradycardia or hypotension. Opioids may result in a large increase in episodes of apnea. No studies reported parent satisfaction with care provided in the NICU. The evidence is very uncertain about the effect of opioids on any outcome when compared to non-pharmacological interventions or to other analgesics. Kinoshita and colleagues. Opioids for procedural pain in neonates. Cochrane Database of Systematic Reviews 2021, Issue 12. Art. No.: CD015056. DOI: 10.1002/14651858.CD015056.

74

76

Cochrane Neonatal

Questions regarding minimizing procedural pain...

Where does the evidence take us?

What are best "practices" regarding minimizing procedural pain?

What future research is urgently needed?

Cochrane Neonatal

 \bigcirc

Sponsors

Cochrane Neonatal received unrestricted grant support to update reviews on the infant and family experience in neonatal intensive care from the Gerber Foundation

80

82

Cochrane Neonatal

The infant and family experience in neonatal intensive care: management of acute procedural pain

To develop an understanding of the strengths and weaknesses of evidence provided by systematic reviews and metaanalyses to inform our practice of neonatalperinatal medicine.

Today's focus will be on managing acute procedural pain.

86

Did you make any New Year's resolutions this year? Yes 35% No 59% I can't remember I did but have already broken them! 4%

87

Cochrane Neonatal

Questions regarding minimizing procedural pain...

Where does the evidence take us?

What are best "practices" regarding minimizing procedural pain?

What future research is urgently needed?

88

Cochrane Neonatal

Management of acute procedural pain

- Impact of pain on neonates
- Guidelines for pain management
- Policies and procedures to minimize painful procedures
- Assessment of pain
- Treatment(s) for procedural pain

Cochrane () **Minimizing procedures:** POKE DO FOR THE PATIENT ... NEVER TO THE PATIENT There are two main definitions for POKE: 1) Any clinical experience that has the potential to harm the patient or fails to add value 2) Team-based, patient-centered ecosystem where all are empowered to actively contribute, surface safety concerns, experience deep respect, relentlessly eliminate waste, and help patients, their families, and caregivers feel valued, safe, and loved. HOW: Truly thoughtful (evidence and pretest probability driven), (VOICE OF) PATIENT DRIVEN, team-based, value-added care The program utilizes an implementation framework: Culture, Leadership, and Tools -> all to "Leverage the Genius at the Bedside." My NTCU: Multi-Hospital Deployment of POKE (1 year): 50% reduction in POKEs (11,000/yr) Reduction in length of stay (~248 hours) CLABSI (1/15 years) Last 4211 days ago 150.000 POKEs eliminated POKEs per patient: 5.1/day -> 3.1/day \$1.2 Million Cost Avoided Press Ganey Engagement: 4.64 RN Turnover <3% \$50 Million Net Revenue Decrease

Neonatal							· · · ·		us heel lance for term neonates
Pain response to V	Pain response to Venipuncture versus heel lance in infants who did not receive a sweet tasting solution: Behavioral pain scores								tot receive a sweet tasting solution:
Study or Subgroup		VP SD	Total	Mean	HL SD	Total	Weight	Std. Mean Difference IV, Fixed, 95% CI	Std. Mean Difference IV, Fixed, 95% Cl
1.1.1 NIPS score Kvist 2002 Shah 1997 Subtotal (95% Cl) Heterogeneity: Chi [#] = Test for overall effect	2.35, df					29 14 43	19.1% 7.7% 26.7%	-0.70 [-1.25, -0.15] -1.51 [-2.38, -0.84] -0.93 [-1.40, -0.47]	* •
1.1.2 NFCS score Larsson 1998 Ogawa 2005 Subtotal (95% Cl) Heterogeneity: Chi ² =	30	150 24	50 25 75	333 52	150 18 «	47 25 72	35.2% 16.6% 51.8%	-0.57 [-0.98, -0.16] -1.02 [-1.61, -0.43] -0.71 [-1.05, -0.38]	+
Test for overall effect					20				
1.1.3 PIPP score Eriksson 1998 Subtotal (95% CI) Heterogeneity: Not ag Test for overall effect			30 30	8.43	3.36	30 30	21.4% 21.4%	-0.67 [-1.19, -0.15] -0.67 [-1.19, -0.15]	★
Total (95% CI) Heterogeneity: Chi* = Test for overall effect Test for subgroup diff	Z = 6.20) (P < I	0.0000	1)			100.0%	-0.76 [-1.00, -0.52]	-4 -2 0 2 4 Favours VP Favours HL
(SMD -0.76, 95% CI -1.00 to -0.52; I ² = 0%).									
Shah VS, Ohlsson A. Venipuncture versus heel lance for blood sampling in term neonates. Cochrane Database of Systematic Reviews 2011, Issue 10. Art. No.: CD001452. DOI: 10.1002/14651858.CD001452.pub4.									

98

Assessment of pain

Neonatal Facial Coding System (NFCS-R)

Premature Infant Pain Profile Revised (PIPP-R)

Neonatal Pain, Agitation and Sedation Scale (N-PASS)

Neonatal Infant Pain Scale (NIPS)

No pain scale/score in routine use

Other scale/score

We primarily use the following pain scales in our

assessment of pain:

6%

100

Poll Everywh

Total Results: 118

